230 research outputs found

    A Self-Reference False Memory Effect in the DRM Paradigm: Evidence from Eastern and Western Samples

    Get PDF
    It is well established that processing information in relation to oneself (i.e., selfreferencing) leads to better memory for that information than processing that same information in relation to others (i.e., other-referencing). However, it is unknown whether self-referencing also leads to more false memories than other-referencing. In the current two experiments with European and East Asian samples, we presented participants the Deese-Roediger/McDermott (DRM) lists together with their own name or other people’s name (i.e., “Trump” in Experiment 1 and “Li Ming” in Experiment 2). We found consistent results across the two experiments; that is, in the self-reference condition, participants had higher true and false memory rates compared to those in the other-reference condition. Moreover, we found that selfreferencing did not exhibit superior mnemonic advantage in terms of net accuracy compared to other-referencing and neutral conditions. These findings are discussed in terms of theoretical frameworks such as spreading activation theories and the fuzzytrace theory. We propose that our results reflect the adaptive nature of memory in the sense that cognitive processes that increase mnemonic efficiency may also increase susceptibility to associative false memories

    International Veterinary Epilepsy Task Force recommendations for a veterinary epilepsy-specific MRI protocol

    Get PDF
    Epilepsy is one of the most common chronic neurological diseases in veterinary practice. Magnetic resonance imaging (MRI) is regarded as an important diagnostic test to reach the diagnosis of idiopathic epilepsy. However, given that the diagnosis requires the exclusion of other differentials for seizures, the parameters for MRI examination should allow the detection of subtle lesions which may not be obvious with existing techniques. In addition, there are several differentials for idiopathic epilepsy in humans, for example some focal cortical dysplasias, which may only apparent with special sequences, imaging planes and/or particular techniques used in performing the MRI scan. As a result, there is a need to standardize MRI examination in veterinary patients with techniques that reliably diagnose subtle lesions, identify post-seizure changes, and which will allow for future identification of underlying causes of seizures not yet apparent in the veterinary literature. There is a need for a standardized veterinary epilepsy-specific MRI protocol which will facilitate more detailed examination of areas susceptible to generating and perpetuating seizures, is cost efficient, simple to perform and can be adapted for both low and high field scanners. Standardisation of imaging will improve clinical communication and uniformity of case definition between research studies. A 6–7 sequence epilepsy-specific MRI protocol for veterinary patients is proposed and further advanced MR and functional imaging is reviewed

    An Arthropod Enzyme, Dfurin 1, and a Vertebrate Furin Homolog Display Distinct Cleavage Site Sequence Preferences for a Shared Viral Proprotein Substrate

    Get PDF
    Alphaviruses replicate in vertebrate and arthropod cells and utilize a cellular enzyme called furin to process the PE2 glycoprotein precursor during virus replication in both cell types. Furin cleaves PE2 at a site immediately following a highly conserved four residue cleavage signal. Prior studies demonstrated that the amino acid immediately adjacent to the cleavage site influenced PE2 cleavage differently in vertebrate and mosquito cells (HW Heidner et al. 1996. Journal of Virology 70: 2069–2073.). This finding was tentatively attributed to potential differences in the substrate specificities of the vertebrate and arthropod furin enzymes or to differences in the carbohydrate processing phenotypes of arthropod and vertebrate cells. To further address this issue, we evaluated Sindbis virus replication and PE2 cleavage in the Chinese hamster, Cricetulus griseus Milne-Edwards (Rodentia: Cricetidae) ovary cells (CHO-K1) and in a CHO-K1-derived furin-negative cell line (RPE.40) engineered to stably express the Dfurin1 enzyme of Drosophila melanogaster Meigen (Diptera: Drosophilidae). Expression of Dfurin1 enhanced Sindbis virus titers in RPE.40 cells by a factor of 102 – 103, and this increase correlated with efficient cleavage of PE2. The PE2-cleavage phenotypes of viruses containing different amino acid substitutions adjacent to the furin cleavage site were compared in mosquito (C6/36), CHO-K1, and Dfurin1-expressing RPE.40 cells. This analysis confirmed that the substrate specificities of Dfurin1 and the putative mosquito furin homolog present in C6/36 cells are similar and suggested that the alternative PE2 cleavage phenotypes observed in vertebrate and arthropod cells were due to differences in substrate specificity between the arthropod and vertebrate furin enzymes and not to differences in host cell glycoprotein processing pathways

    Circadian Behaviour in Neuroglobin Deficient Mice

    Get PDF
    Neuroglobin (Ngb), a neuron-specific oxygen-binding globin with an unknown function, has been proposed to play a key role in neuronal survival. We have previously shown Ngb to be highly expressed in the rat suprachiasmatic nucleus (SCN). The present study addresses the effect of Ngb deficiency on circadian behavior. Ngb-deficient and wild-type (wt) mice were placed in running wheels and their activity rhythms, endogenous period and response to light stimuli were investigated. The effect of Ngb deficiency on the expression of Period1 (Per1) and the immediate early gene Fos was determined after light stimulation at night and the neurochemical phenotype of Ngb expressing neurons in wt mice was characterized. Loss of Ngb function had no effect on overall circadian entrainment, but resulted in a significantly larger phase delay of circadian rhythm upon light stimulation at early night. A light-induced increase in Per1, but not Fos, gene expression was observed in Ngb-deficient mice. Ngb expressing neurons which co-stored Gastrin Releasing Peptide (GRP) and were innervated from the eye and the geniculo-hypothalamic tract expressed FOS after light stimulation. No PER1 expression was observed in Ngb-positive neurons. The present study demonstrates for the first time that the genetic elimination of Ngb does not affect core clock function but evokes an increased behavioural response to light concomitant with increased Per1 gene expression in the SCN at early night

    Optimization of the Balanced Steady State Free Precession (bSSFP) Pulse Sequence for Magnetic Resonance Imaging of the Mouse Prostate at 3T

    Get PDF
    INTRODUCTION: MRI can be used to non-invasively monitor tumour growth and response to treatment in mouse models of prostate cancer, particularly for longitudinal studies of orthotopically-implanted models. We have optimized the balanced steady-state free precession (bSSFP) pulse sequence for mouse prostate imaging. METHODS: Phase cycling, excitations, flip angle and receiver bandwidth parameters were optimized for signal to noise ratio and contrast to noise ratio of the prostate. The optimized bSSFP sequence was compared to T1- and T2-weighted spin echo sequences. RESULTS: SNR and CNR increased with flip angle. As bandwidth increased, SNR, CNR and artifacts such as chemical shift decreased. The final optimized sequence was 4 PC, 2 NEX, FA 50°, BW ±62.5 kHz and took 14-26 minutes with 200 µm isotropic resolution. The SNR efficiency of the bSSFP images was higher than for T1WSE and T2WSE. CNR was highest for T1WSE, followed closely by bSSFP, with the T2WSE having the lowest CNR. With the bSSFP images the whole body and organs of interest including renal, iliac, inguinal and popliteal lymph nodes were visible. CONCLUSION: We were able to obtain fast, high-resolution, high CNR images of the healthy mouse prostate with an optimized bSSFP sequence

    Hyperleptinemia Is Required for the Development of Leptin Resistance

    Get PDF
    Leptin regulates body weight by signaling to the brain the availability of energy stored as fat. This negative feedback loop becomes disrupted in most obese individuals, resulting in a state known as leptin resistance. The physiological causes of leptin resistance remain poorly understood. Here we test the hypothesis that hyperleptinemia is required for the development of leptin resistance in diet-induced obese mice. We show that mice whose plasma leptin has been clamped to lean levels develop obesity in response to a high-fat diet, and the magnitude of this obesity is indistinguishable from wild-type controls. Yet these obese animals with constant low levels of plasma leptin remain highly sensitive to exogenous leptin even after long-term exposure to a high fat diet. This shows that dietary fats alone are insufficient to block the response to leptin. The data also suggest that hyperleptinemia itself can contribute to leptin resistance by downregulating cellular response to leptin as has been shown for other hormones

    Кинетика восстановления железа при восстановительной плавке рудоугольных окатышей

    Get PDF
    Исследовано влияние интенсивности теплообмена на кинетику восстановления железа в процессе плавки рудоугольных окатышей. Показано, что с ростом интенсивности теплообмена повышается скорость восстановительных процессов. Вследствие роста коэффициента теплообмена увеличивается глубина восстановленного слоя окатыша, существенно изменяются его структура и химический состав образующейся металлической фазы.Досліджено вплив інтенсивності теплообміну на кінетику відновлення заліза в процесі плавки рудовугільних окатишів. Показано, що при зростанні інтенсивності теплообміну підвищується швидкість відновлювальних процесів. Внаслідок зростання коефіцієнту теплообміну збільшується глибина відновленого шару окатиша, суттєво змінюються його структура та хімічний склад металевої фази, що утворюється.Influence of intensity of heat exchange is investigational on kinetics reduction of iron in the process of melting ore-coal pellets. It is rotined that speed of reduction processes rises with growth of intensity of heat exchange. Because of growth of coefficient of heat exchange the depth of the recovered layer of pellet is increased, his structure and chemical composition of appearing metallic phase changes substantially

    The enigmatic mitochondrial genome of Rhabdopleura compacta (Pterobranchia) reveals insights into selection of an efficient tRNA system and supports monophyly of Ambulacraria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Hemichordata comprises solitary-living Enteropneusta and colonial-living Pterobranchia, sharing morphological features with both Chordata and Echinodermata. Despite their key role for understanding deuterostome evolution, hemichordate phylogeny is controversial and only few molecular data are available for phylogenetic analysis. Furthermore, mitochondrial sequences are completely lacking for pterobranchs. Therefore, we determined and analyzed the complete mitochondrial genome of the pterobranch <it>Rhabdopleura compacta </it>to elucidate deuterostome evolution. Thereby, we also gained important insights in mitochondrial tRNA evolution.</p> <p>Results</p> <p>The mitochondrial DNA of <it>Rhabdopleura compacta </it>corresponds in size and gene content to typical mitochondrial genomes of metazoans, but shows the strongest known strand-specific mutational bias in the nucleotide composition among deuterostomes with a very GT-rich main-coding strand. The order of the protein-coding genes in <it>R. compacta </it>is similar to that of the deuterostome ground pattern. However, the protein-coding genes have been highly affected by a strand-specific mutational pressure showing unusual codon frequency and amino acid composition. This composition caused extremely long branches in phylogenetic analyses. The unusual codon frequency points to a selection pressure on the tRNA translation system to codon-anticodon sequences of highest versatility instead of showing adaptations in anticodon sequences to the most frequent codons. Furthermore, an assignment of the codon AGG to Lysine has been detected in the mitochondrial genome of <it>R. compacta</it>, which is otherwise observed only in the mitogenomes of some arthropods. The genomes of these arthropods do not have such a strong strand-specific bias as found in <it>R. compacta </it>but possess an identical mutation in the anticodon sequence of the tRNA<sub>Lys</sub>.</p> <p>Conclusion</p> <p>A strong reversed asymmetrical mutational constraint in the mitochondrial genome of <it>Rhabdopleura compacta </it>may have arisen by an inversion of the replication direction and adaptation to this bias in the protein sequences leading to an enigmatic mitochondrial genome. Although, phylogenetic analyses of protein coding sequences are hampered, features of the tRNA system of <it>R. compacta </it>support the monophyly of Ambulacraria. The identical reassignment of AGG to Lysine in two distinct groups may have occurred by convergent evolution in the anticodon sequence of the tRNA<sub>Lys</sub>.</p
    corecore